

End to End Information Infrastructure & Services in Open Science Grid (OSG)

Anthony Tiradani Fermilab

Definitions and Scope

- Information Types:
 - Monitoring: Information that gives a view on resource health and current availability. Example: RSV
 - Accounting: Information that gives a view of what resources are being/has been used, for how long, and by whom.
 Example: Gratia
 - Discovery: Information that provides a view of what services are offered and what those services look like. Example: RESS/BDII
- This discussion will deal with Discovery information. How is it generated and published? Who consumes it?
- Note: The current implementation of the Discovery Information contains data that can cross definitions.
 There are groups that use it for other purposes (Installed Capacity).

Current Information Flow (Simplified)

- CE publishes (pushes) information to a BDII Collector
- CE also publishes (pushes) information to ReSS Collector
- VO's access ReSS or the BDII for service/resource discovery

ReSS

Pros

- Simple VO start up
- No need for a full WMS
- Submit via Condor-G
- Cons
 - Fragile infrastructure
 - A small (schema legal) change can cause an unmanageable number of extra classads to be generated
 - Single point of failure service not distributed
 - CEMon can exhibit unstable behavior

BDII

Pros

- Interoperability with EGEE
- Somewhat scalable
- Very visible information
 - Via Idapsearch
 - Via collector web interface
- Well defined data structure (Glue Schema)
- Cons
 - Results are machine readable
 LDIF not very human readable
 - Infrastructure is fragile
 - Adding custom attributes difficult
 - Overloads fairly easily

FTS

- FTS only queries the BDII (WLCG) for Storage Element information
- Information about FTS channels are published to the BDII manually
 - Only one command line tool uses this information
 - According to the developers of FTS, this tool will be deprecated in the next release
 - Only Tier-1's run FTS allowing for quicker upgrade time frames

Case Study - ATLAS

- All information is handled by PanDA
 - PanDA has an internal database of known sites
 - All jobs are matched via the internal database
 - PanDA's database is updated in two ways:
 - EGEE sites the EGEE BDII is queried
 - US sites All updates are a manual process
 - A static list of site information is maintained
 - VORS is queried, but does not override static list

Case Study - CMS

- CMS uses CRAB
 - CRAB client/server only queries the EGEE BDII
 - The EGEE BDII queries the OSG BDII (port 2180) for OSG sites

Critical Functionality

- Must feed LDIF to the WLCG BDII for CMS and ATLAS interoperability
- Must feed to ReSS (Non-WLCG VOs use ReSS)
- A Path is needed to add custom non-Glue attributes to the BDII for various purposes that are un-handled by the current Glue schema.
- Must be Glue 1.3 and Glue 2.0 compatible

Addendum

- OSG maintains an instance of the BDII on port 2170.
 According to the BDII logs, the only access has been due to monitoring, development and debugging activities.
- The Glide-In WMS only queries the BDII once to get a list of sites to submit jobs to
- ReSS makes assumptions about how schema pieces go together. The assumptions include what is the most important information to generate the combination of classads.
- ReSS has performance limits at 50k classads (no crash).
- ReSS Collector also has web service interface and db backend if configured for access.